If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24r^2=3r
We move all terms to the left:
24r^2-(3r)=0
a = 24; b = -3; c = 0;
Δ = b2-4ac
Δ = -32-4·24·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-3}{2*24}=\frac{0}{48} =0 $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+3}{2*24}=\frac{6}{48} =1/8 $
| 3/2(2x+6)=3+9 | | 7x^2+20x=350 | | 9r-15=22 | | x-15.3=4.2 | | 2*6+3y=2 | | 4(13/2+3x)=2x+6 | | 2(1+x)=15-4x | | 25+3x=9+4x | | 92=6x-2+2x | | 3(x+1/2)=3(x+4/5) | | 2(x-7)+2x=-2 | | 12-a+3a=4 | | x+1/5=-1/4(20x-244/5) | | X+3+2x+3=3=3(x+2) | | 17x+18=58 | | x+1/5=-1/4(20x-244/5 | | -2x^2-16x+936=0 | | 4(3y-4)+7y=4y+14 | | x+1/5=-1/4(20x-24/5) | | 6(4x-5)=7(2x-10) | | 40c^2=5c | | 5.4=x+3.3 | | 2(-x-6)=20 | | 18y+18=12 | | 2x-7=3x+15 | | s(s-8)(s+15)=0 | | x+21+x+61x+23=180 | | 33=-9(6h-4) | | 2x-1/4(x+1/3)=3(x+1/6) | | 2(x=1)/3-x-1/6=1 | | 2x+3=2(x+1.5) | | 16(.5x+2)=3x |